Fine-grained Parameterized Algorithms

FPA \cdot SoSe-2024 \cdot tcs.uni-frankfurt.de/parameterized/ \cdot 2024-07-03 • 2d88037

Problem set 5: Treewidth and Graph minors

Overview: With this problem set, you can train reasoning about algorithmic meta-theorems and graph minor theory.

Instructions: For each skill, select exactly one problem below and submit your solution in Moodle; in your submission, make sure to repeat the problem that you are solving. The problems are roughly ordered by difficulty, choose a problem that you find non-trivial and interesting. (You are of course welcome to try the other problems as well and ask us for feedback.)
!! Skill-5a. Algorithmic meta-theorems: I can apply algorithmic meta-theorems to design fixed-parameter tractable algorithms.
5.1 Maximum Cut using Courcelle's Theorem. A cut of a graph G is a partition (A, B) of the vertices of G and the size of a cut (A, B) is the number of edges of G that have one endpoint in A and one endpoint in B. The problem MaxCut asks, given a graph G, to compute the size of the largest cut in G. Prove that MaxCut can be solved in time $f(\operatorname{tw}(G)) \cdot|V(G)|$ for some computable function f by invoking Courcelle's Theorem (Theorem 7.11).
5.2 Graph Property Verification using Courcelle's Theorem. Let Φ be a graph property expressible in monadic second-order logic. The problem Verify [Φ] asks, given a graph G, to decide whether G has property Φ. Invoke Courcelle's Theorem (Theorem 7.11) to prove that this problem can be solved in time $f(\mathrm{vc}(G)) \cdot n$ for some computable function f, where $\operatorname{vc}(G)$ is the size of the smallest vertex-cover of G.
5.3 Cycle Packing using Graph Minors. In the Cycle Packing problem, we are given an undirected graph G and a positive integer k, and the goal is to check whether there exist k cycles in G that are pairwise vertex disjoint. Use Theorem 6.12ff from the book to prove that this problem is nonuniformly fixed-parameter tractable when parameterized by k.
ece 5.4 Closest String using Integer Linear Programming. In the Closest String problem, we are given a set of k strings x_{1}, \ldots, x_{k} over alphabet Σ, each of length L, and a positive integer d. The goal is to find a string y of length L such that the Hamming Distance ${ }^{1}$ between y and x_{i} is bounded by d for every $i \in\{1, \ldots, k\}$. Use Theorem 6.5 from the book to prove that the problem is fixed-parameter tractable when parameterized by k and $|\Sigma|$.

Optional bonus task: Show that this problem parameterized by k only remains fixed-parameter tractable.

[^0]!! Skill-5b. Graph minors: I can mathematically reason about graph minors and apply the Graph Minors Theorem. (See Section 6.3 and 7.7 in Cygan et al.)
5.5 Excluded Grid Theorem is Tight. Show that the dependency on k in the Excluded Grid Theorem needs to be $\Omega\left(k^{2}\right)$. That is, construct a graph of treewidth $\Omega\left(k^{2}\right)$ that does not contain a $k \times k$ grid as a minor.
5.6 Bidimensionality. Show that the following problems are bidimensional: Feedback Vertex Set, Induced Matching, Cycle Packing, Scattered Set for a fixed value of d, Longest Path, Dominating Set, and r-Center for a fixed r.
eec 5.7 Brambles in Grid Graphs. Prove that for every $t>1$, the $t \times t$ grid graph contains a bramble of order $t+1$ and thus the treewidth of the $t \times t$ grid graph is t.

[^0]: ${ }^{1}$ The Hamming Distance between two strings x and y of the same length is the number of positions i such that $x_{i} \neq y_{i}$ holds.

