Fine-grained Parameterized Algorithms

FPA \cdot SoSe-2024 •tcs.uni-frankfurt.de/parameterized/ $\cdot 2024-07-03 \cdot 2 d 88037$

Problem set 6: Algebraic Methods

Overview: With this problem set, you can train reasoning about algebraic methods.
Instructions: For each skill, select exactly one problem below and submit your solution in Moodle; in your submission, make sure to repeat the problem that you are solving. The problems are roughly ordered by difficulty, choose a problem that you find non-trivial and interesting. (You are of course welcome to try the other problems as well and ask us for feedback.)
!! Skill-6a. Reason about and adapt algebraic methods: Ican formally reason about and adapt fast Möbius transforms and fast product operations. (See Sections 10.1-10.3 in Cygan et al.)
easy 6.1 Proof of Proposition 10.10. Prove that $\zeta=\sigma \mu \sigma$ and $\mu=\sigma \zeta \sigma$ hold.
6.2 Fast Packing Product. The packing product of two functions $f, g: 2^{V} \rightarrow \mathbb{Z}$ is a function $\left(f *_{p}\right.$ $g): 2^{V} \rightarrow \mathbb{Z}$ such that for every $Y \subseteq V$, we have

$$
\left(f *_{p} g\right)(Y)=\sum_{\substack{A, B \subseteq Y \\ A \cap B=\emptyset}} f(A) g(B) .
$$

Show that all 2^{n} values of $f * p g$ can be computed in time $2^{n} n^{O(1)}$, where $n=|V|$.
6.3 Möbius inversion on posets. In this guided exercise, we generalize the principle of Möbius inversion to finite partially ordered sets (posets). To this end, let P be a poset. The incidence algebra of a poset (P, \leq) is defined as follows:

$$
\mathbb{0}(P, \leq):=\left\{A \in \mathbb{C}^{P \times P} \mid x \not \leq y \Rightarrow A(x, y)=0\right\} .
$$

One example of an element of $\square(P, \leq)$ is the so-called zeta function:

$$
\zeta(x, y)= \begin{cases}1 & \text { if } x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

Consider the element μ of $\square(P, \leq)$, which is called the Möbius function over (P, \leq) and which is inductively defined as follows:

$$
\mu(x, y)= \begin{cases}1 & \text { if } x=y, \\ 0 & \text { if } x \neq y, \\ -\sum_{x \leq z<y} \mu(x, z) & \text { otherwise. }\end{cases}
$$

- Prove that the following identity holds for all $x, y \in P$:

$$
\sum_{x \leq z \leq y} \mu(x, z)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

- Prove $\mu=\zeta^{-1}$ and conclude from $\zeta \cdot \mu=$ id that the following identity holds as well:

$$
\sum_{x \leq z \leq y} \mu(z, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

- Möbius inversion: Let $f, g: P \rightarrow \mathbb{C}$ such that $g(x)=\sum_{y \leq x} f(y)$ holds for all $x \in P$. Prove that the following identity holds for all $x \in P$:

$$
f(x)=\sum_{y \leq x} \mu(y, x) \cdot g(y)
$$

!! Skill-6b. Apply algebraic methods to design algorithms: I can apply inclusion-exclusion, the fast Möbius transform, and fast product operations to design fast algorithms. (See Sections 10.1-10.3 in Cygan et al.)
6.4 Ryser's formula. Use the principle of inclusion-exclusion to design an algorithm which computes the number of perfect matchings in a given n-vertex bipartite graph in time $2^{n / 2} n^{O(1)}$ and polynomial space.
6.5 List coloring. In the List Coloring problem, we are given an n-vertex graph G and, for each vertex $v \in V(G)$, there is a set (also called a list) of admissible colors $L(v) \subseteq\{1, \ldots, n\}$. The goal is to verify whether it is possible to find a proper vertex coloring $c: V(G) \rightarrow \mathbb{N}$ of G such that for every vertex v, we have $c(v) \in L(v)$. In other words, $L(v)$ is the set of colors allowed for v. Show a $2^{n} n^{O(1)}$-time algorithm

6.6 Counting subgraphs. In this guided exercise, you will develop an efficient algorithm for computing the number of subgraphs of a given graph G that are isomorphic to a fixed graph H.
Building on 6.3, we use Möbius inversion on the partition lattice: Let H be a graph with vertex set V. Given two partitions σ and ρ of V, we write $\sigma \rightarrow \rho$ if ρ can be obtained from σ by joining two blocks of σ. Example: For $\sigma=\{\{1,4\},\{2\},\{3\}\}$, we have $\sigma \rightarrow\{\{1,2,4\},\{3\}\}$. Now let \leq be the reflexive-transitive closure of \rightarrow, i.e., $\sigma \leq \rho$ if and only if there are $\sigma_{1}, \ldots, \sigma_{k}$ with $\sigma \rightarrow \sigma_{1} \rightarrow \cdots \rightarrow \sigma_{k} \rightarrow \rho$. Note that k might be zero.

- Let $P(V)$ be the set of partitions of V. Show that $(P(V), \leq)$ is a poset. This poset is called the partition lattice. What is the minimum \perp and the maximum T of this poset?
- Given an element $\sigma \in P(V)$, the graph H / σ is obtained from H by contracting each block of σ to a single vertex, deleting multiple edges, and keeping self-loops. Given a graph G, we let $\operatorname{Hom}(H, G)$ be the number of graph homomorphisms from H to G and $\operatorname{let} \operatorname{Inj}(H, G)$ be the number of injective graph homomorphisms from H to G. Use Möbius inversion to prove

$$
\begin{equation*}
\operatorname{Inj}(H, G)=\sum_{\sigma \in P(V)} \mu(\perp, \sigma) \cdot \operatorname{Hom}(H / \sigma, G) . \tag{1}
\end{equation*}
$$

- Given graphs H and G, it is known that the number of subgraphs of G that are isomorphic to H equals $\operatorname{Aut}^{-1}(H) \cdot \operatorname{lnj}(H, G)$, where $\operatorname{Aut}(H)$ is the number of automorphisms of H, that is, bijective homomorphisms from H to H. Combine this knowledge with Exercise 4.7 and (1) to design an algorithm for Subgraph Isomorphism. What is the running time of your algorithm?

