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Problem set 6: Algebraic Methods

Overview: With this problem set, you can train reasoning about algebraic methods.

Instructions: For each skill, select exactly one problem below and submit your solution in Moodle; in
your submission, make sure to repeat the problem that you are solving. The problems are roughly ordered
by difficulty, choose a problem that you find non-trivial and interesting. (You are of course welcome to try
the other problems as well and ask us for feedback.)

Il Skill-6a. Reason about and adapt algebraic methods: 7 can formally reason about and adapt fast Mobius
transforms and fast product operations. (See Sections 10.1-10.3 in Cygan et al.)

easy 6.1 Proof of Proposition 10.10. Prove that {' = oo and ¢ = ¢ {7 hold.

6.2 Fast Packing Product. The packing product of two functions £, ¢: 2" — Z is a function (f %5
g): 2V — Z such that for every Y C V', we have

(Fr(X)= . F(dg(B).

A,BCY
ANB=0

Show that all 2” values of f/ *, g can be computed in time 22290 where n = |V|.

6.3 Mobius inversion on posets. In this guided exercise, we generalize the principle of Mobius inversion
to finite partially ordered sets (posets). To this end, let P be a poset. The incidence algebra of a poset (P, <)

is defined as follows:
I(P,<) :={4deCP™P|x ¢ y= A(x,y) =0}.

One example of an element of 1( P, <) is the so-called zeta function:

Z(x,y)={1 x <y,

0 otherwise.

Consider the element x of I( P, <), which is called the Mobius function over (P, <) and which is inductively
defined as follows:
1 ifx =y,

u(x,y) =10 ifx £y,
— Xr<e<y #(x,2) otherwise.

* Prove that the following identity holds for all x, y € P:

1 ifx=y
Z plv,2) = {O otherwise

xX<zLy
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* Prove u = { ! and conclude from { - # = id that the following identity holds as well:
1 ifx=y,
xSZZSy K2 ) = {0 otherwise.

* Mobius inversion: Let f, g: P — C such that g(x) = Dy<x f () holds for all x € P. Prove that
the following identity holds for all x € P:

F(2) =" w30 g()

y<x

Il Skill-6b. Apply algebraic methods to design algorithms: 7 can apply inclusion—exclusion, the fast Mobins
transform, and fast product operations to design fast algorithms. (See Sections 10.1-10.3 in Cygan et al.)

6.4 Ryser’s formula. Use the principle of inclusion—exclusion to design an algorithm which computes
the number of perfect matchings in a given z-vertex bipartite graph in time 27/2,0(1) and polynomial
space.

6.5 List coloring. In the List Coloring problem, we are given an z-vertex graph G and, for each vertex
v € V(G), there is a set (also called a list) of admissible colors L(v) C {1,...,n}. The goal is to verify
whether it is possible to find a proper vertex coloring ¢: V' (G) — N of G such that for every vertex v, we
have ¢(v) € L(v). In other words, L(v) is the set of colors allowed for v. Show a 2729 -time algorithm
for List Coloring. Hrnz: dLOL wrsvoad T awoty seediviopin ot ignbh

6.6 Counting subgraphs. In this guided exercise, you will develop an efficient algorithm for computing
the number of subgraphs of a given graph G that are isomorphic to a fixed graph /.

Building on 6.3, we use M6bius inversion on the partition lattice: Let A be a graph with vertex set /.
Given two partitions o and p of /', we write ¢ — p if p can be obtained from & by joining two blocks of 7.
Example: For o = {{1, 4}, {2}, {3}}, we have ¢ — {{1, 2,4}, {3}}. Now let < be the reflexive-transitive
closure of —, i.e., ¢ < pifand onlyif thereare oy,..., 0, withe — 5y — -+ — ¢ — p. Note that £
might be zero.

* Let P(V') be the set of partitions of . Show that (P(V), <) is a poset. This poset is called the
partition lattice. What is the minimum L and the maximum T of this poset?

* Given an element ¢ € P(V'), the graph H /o is obtained from A by contracting each block of & to
a single vertex, deleting multiple edges, and keeping self-loops. Given a graph G, we let Hom(H, G)
be the number of graph homomorphisms from A to G and let Inj(H, G) be the number of injective
graph homomorphisms from A to G. Use Mébius inversion to prove

Inj(H, G) = Z #(L, o) -Hom(H /7, G). (1)
celP(V)

* Given graphs A and G, it is known that the number of subgraphs of G that are isomorphic to H
equals Aut™ (H)-Inj(H, G), where Aut(H) is the number of automorphisms of A, thatis, bijective
homomorphisms from A to H. Combine this knowledge with Exercise 4.7 and (1) to design an
algorithm for SuBGrAPH IsoMoRPHISM. What is the running time of your algorithm?
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